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Background
• Partitioned Communication

• A new addition to the MPI specification intended to improve the communication performance 
on many-core CPUs and GPUs by overlapping communication with computation

• Current Work
• Characterize, model, and predict performance gains able to be realized by using partitioned 

communication

• Looking Ahead
• Leverage performance models and predictive capability to optimize partitioned 

communication routines with message aggregation and scheduling in real and proxy 
applications



Single-Send vs. Finepoints
• Single-Send: Single large message after last thread completes
• Finepoints: Multiple small messages, each sent once each thread completes



Partitioned Modeling Assumptions
• Load-balanced threads

• Threads responsible for compute/communication of data partitions of equal size

• Threads individually send partitioned data as single message

• Thread runtimes are distributed normally
• Allows the simple usage of the expected mean maximum approximation (EMMA)
• 𝐸𝐸 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑚𝑚 𝑋𝑋𝑖𝑖 ≈ 𝐹𝐹−1(0.57037

1
𝑚𝑚), where 𝐹𝐹 = 𝐶𝐶𝐶𝐶𝐹𝐹 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑

• Message transmission times can be described by the postal model
• Postal Model: 𝑇𝑇𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 = 𝛼𝛼 + 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝛽𝛽
,𝛼𝛼 = 𝑙𝑙𝑚𝑚𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑙𝑙,𝛽𝛽 = 𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑏



Partitioned Model Specification
• Further Assumptions:

• Optimistic Sending Assumption: Data transmission to begin as soon as the fastest thread finishes 
its compute and will proceed continuously until the slowest thread finishes its compute

• At least one message will remain unsent at the time that the slowest thread finishes its compute



Partitioned Model Implementation
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Partitioned Benchmark Implementation
• Analogous to MPI Ping-Pong Benchmark
• Initializes with warm-up loops
• Send-Side Partitioned Communication with MPIPCL
• Timing and OpenMP reductions to calculate performance
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Model Evaluation
• Partitioned Benchmark 

Performance compared to 
Model Predicted Performance 
on Lassen

• Model assumptions investigated 
by toggling:

• Async progress thread 
• Hardware tag matching
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