
Modeling Partitioned MPI 
Communication Performance

Jered Dominguez-Trujillo
Prof. Patrick G. Bridges
UNM Computer Science



Background
• Partitioned Communication

• A new addition to the MPI specification intended to improve the communication performance 
on many-core CPUs and GPUs by overlapping communication with computation

• Current Work
• Characterize, model, and predict performance gains able to be realized by using partitioned 

communication

• Looking Ahead
• Leverage performance models and predictive capability to optimize partitioned 

communication routines with message aggregation and scheduling in real and proxy 
applications



Single-Send vs. Finepoints
• Single-Send: Single large message after last thread completes
• Finepoints: Multiple small messages, each sent once each thread completes



Partitioned Modeling Assumptions
• Load-balanced threads

• Threads responsible for compute/communication of data partitions of equal size

• Threads individually send partitioned data as single message

• Thread runtimes are distributed normally
• Allows the simple usage of the expected mean maximum approximation (EMMA)
• 𝐸𝐸 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑚𝑚 𝑋𝑋𝑖𝑖 ≈ 𝐹𝐹−1(0.57037

1
𝑚𝑚), where 𝐹𝐹 = 𝐶𝐶𝐶𝐶𝐹𝐹 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑

• Message transmission times can be described by the postal model
• Postal Model: 𝑇𝑇𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 = 𝛼𝛼 + 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝛽𝛽
,𝛼𝛼 = 𝑙𝑙𝑚𝑚𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑙𝑙,𝛽𝛽 = 𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑏



Partitioned Model Specification
• Further Assumptions:

• Optimistic Sending Assumption: Data transmission to begin as soon as the fastest thread finishes 
its compute and will proceed continuously until the slowest thread finishes its compute

• At least one message will remain unsent at the time that the slowest thread finishes its compute



Partitioned Model Implementation

Legend
Inputs
Model
Outputs

Partitioned Communication Model

Comm/Compute 
OverlapSlowest ThreadEMMA

Postal Model Message Time

Average Compute Time
Amount of Noise

Thread Count

Total Buffer Size

OSU Benchmark Data
Effective Bandwidth

Elapsed Time



Partitioned Benchmark Implementation
• Analogous to MPI Ping-Pong Benchmark
• Initializes with warm-up loops
• Send-Side Partitioned Communication with MPIPCL
• Timing and OpenMP reductions to calculate performance

Thread count
Total buffer size

Average compute time
Amount of noise

Partitioned 
Communication 

Benchmark

Effective Bandwidth
Elapsed Time

Legend
Inputs

Model

Outputs



Model Evaluation
• Partitioned Benchmark 

Performance compared to 
Model Predicted Performance 
on Lassen

• Model assumptions investigated 
by toggling:

• Async progress thread 
• Hardware tag matching



References and Acknowledgements
References

• Ryan E Grant, Matthew G F Dosanjh, Michael Levenhagen, Ron Brightwell, and Anthony 
Skjellum. 2019. Finepoints: Partitioned Multithreaded MPI Communication. ISC High 
Performance Conference (ISC 2019) (2019).

• Acknowledgements
• Ryan Grant and Matthew Dosanjh – For guidance regarding partitioned communication 
• Prof. Purushotham Bangalore, Prof. Anthony Skjellum, and Derek Schafer - For allowing 

access to MPIPCL, a Partitioned Communication Library
• Prof. Patrick Bridges and Prof. Amanda Bienz - For technical feedback and support
• This work was [partially] supported by the U.S. Department of Energy’s National Nuclear 

Security Administration (NNSA) under the Predictive Science Academic Alliance Program 
(PSAAP-III) Award #DE-NA0003966


	Modeling Partitioned MPI Communication Performance
	Background
	Single-Send vs. Finepoints
	Partitioned Modeling Assumptions
	Partitioned Model Specification
	Partitioned Model Implementation
	Partitioned Benchmark Implementation
	Model Evaluation
	References and Acknowledgements

